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Regularization of the three-dimensional gravitational
potential

Pasquale Nardone†
Department of Physics, Université Libre de Bruxelles CP231, Bld du Triomphe, 1050 Bruxelles,
Belgium

Received 1 September 1997

Abstract. The ideas of geometrical algebra are used to investigate the physical content of the
Kustaanheimo–Stiefel regularization procedure, which transforms ther−1 potential into ther2

harmonic oscillator potential.

1. Introduction

The question of regularization of the gravitational potential is important and practical,
because it transform the ‘singular’r−1 potential into the well known regular one, namely
r2. This problem was solved in one dimension by Levi-Civita [1] (in 1956) who showed
that the solution must proceed in two steps. First a new parameters replaces the time
variable t , then there is a ‘quadratic’ change of variabler = w2. In thew − s space the
problem becomes regular. The three-dimensional generalization was obtained (in 1965) by
Kustaanheimo and Stiefel [2, 3] (KS) but using an intricate matrix manipulation to extend
the ‘quadratic’ relation in three dimensions.

On the other hand, Hestenes [4–6] has shown the power of the ‘geometrical algebra’
formalism (GA) which reveals a new ‘deep’ physical content of the usual vectors analysis.
The KS formalism was recognized to be a ‘manipulation’ on quaternions, which appears
naturally in Hestenes geometrical algebra. The aim is to show that the GA approach throws
new insight onto the KS transformation, and then also on the Kepler two-body motion.

2. Geometrical algebra background

Geometrical algebra consists of building a non-commutative algebra from scalar and vectors
to bivectors, and reaching finally (in three dimensions) a unique trivector†. Let us start with
the three orthonormal vectorse1, e2, e3. We can define three bivectors by:

Ee12
def=e1e2 = −e2e1 Ee23

def=e2e3 = −e3e2 Ee31
def=e3e1 = −e1e3 (1)

and the unique trivector by‡:

η
def=e1e2e3. (2)

† E-mail address: pnardon@ulb.ac.be
† A full description can be found in [4].
‡ Here the notationη is prefered to the Hestenes onei, to enhance the ‘real’ character of the algebra.
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In three dimensions, we have a ‘duality’ between bivectors and vectors through the ‘volume’
η

Ee12 = ηe3 Ee23 = ηe1 Ee31 = ηe2 (3)

which finally gives the algebra:

e1 e2 e3 ηe1 ηe2 ηe3 η

e1 1 ηe3 −ηe2 η −e3 e2 ηe1

e2 −ηe3 1 ηe1 e3 η −e1 ηe2

e3 ηe2 −ηe1 1 −e2 e1 η ηe3

ηe1 η −e3 e2 −1 −ηe3 ηe2 −e1

ηe2 e3 η −e1 ηe3 −1 −ηe1 −e2

ηe3 −e2 e1 η −ηe2 ηe1 −1 −e3

η ηe1 ηe2 ηe3 −e1 −e2 −e3 −1

. (4)

We see that the trivectorη commutes with all elements of the algebra and that the scalar
and vectorial products in usual vectorial analysisVA are rewritten in GA by:

VA GA

s = a · b s = 1
2{a, b}

c = a× b 1
2[a, b] = ηc.

(5)

An object in the GA is then a linear combination of fundamental elements, a scalars, a
vectorv, a bivectorηw, and a trivectorηt :

O = s + v + ηw + tη ∈ V0+ V1+ V2+ V3. (6)

It is easy to see that the algebra naturally contains two subalgebras: the ‘complex’ algebra
C = V0+ V3 and the ‘quaternion’ algebraQ = V0+ V2.

It is convenient to define two operators on the algebra defined by:

O† = s + v − ηw − tη and O∗ = s − v + ηw − tη (7)

which corresponds to permutating the vectors and to changing the sign of each vectors
respectively. This unables us to extract fromO each part:

O +O†
{
(O +O†)+ (O +O†)∗ = 4s

(O +O†)− (O +O†)∗ = 4v

O −O†
{
(O −O†)+ (O −O†)∗ = 4ηw

(O −O†)− (O −O†)∗ = 4ηt.

(8)

3. Levi-Civita approach

The equations of motion for the 1/r potential can be written as†:

d2

dt2
x = −K

r3
x (9)

† For two bodies of massm1 andm2, we haveK = G(m1+m2) for the gravitational force andK = e2

4πε0

m1+m2
m1m2

for electrostatic force.h = (E − 1
2(m1 +m2)v

2
G)

m1+m2
m1m2

for both,vG is the velocity of the centre of mass.
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which leads to the conservation of energy per mass:

h = 1

2
v2− K

r
. (10)

Let us express the timet in terms of a new variables, we have then:
1

t ′2
x′′ − t ′′

t ′3
x′ = −K

r3
x

1

2t ′2
x′.x′ − K

r
= h

(11)

where′ is the derivative by respect tos. Taking t ′ = r leads to:{
rx′′ − r ′x′ = −Kx
1
2x
′.x′ −Kr = hr2.

(12)

In one dimension these equations simplify to:{
xx ′′ − x ′x ′ = −Kx
1
2x
′x ′ −Kx = hx2.

(13)

The Levi-Civita proposal consists of a change of variablex
def=w2 which then gives:{

2ww′′ − 2w′2 = −K
2w′2−K = hw2

→ w′′ − h
2
w = 0. (14)

4. The Kustaanheimo–Stiefel transformation

Following the Levi-Civita argument, we want a new variablew such that in three dimensions
x be ‘quadratic’ inw. Furthermore, geometrical algebra shows that a pure vector is
characterized by

O = O† and O = −O∗. (15)

This leads to the following KS proposal:

x = w†nw with w = α + ηβ and nn = 1 (16)

where w(s) belongs to the quaternion subalgebra andn is a constant unit vector.
Remembering thatw†w is a scalar which commutes with all elements of the algebra, we
also have:

r2 = xx = w†nww†nw = (w†w)2→ w†w = α2+ β2 = r. (17)

The ‘norm’ ofw is just the
√
r as in one dimension. This enables us to write the quaternion

w in terms of a unit quaternionu:

w
def=√r u = √r(cosθ + η sinθβ̂) = √reηθβ̂

x = ru†nu = re−ηθβ̂neηθβ̂
(18)

(β̂ is the unit vector in theβ direction).
This shows that the KS transformation consists of expressingx as a rotationθ around

β̂ of the vectorrn, and to study the dynamics of this transformation.
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Futhermore, the velocity is (using(u†u)′ = 0):

d

dt
x = 1

r
x′ = 1

r
(r ′u†nu+ ru†′nu+ ru†nu′)

= 1

r
(r ′x̂ + ru†′uu†nu+ ru†nuu†u′)

= 1

r
(r ′x̂ − ru†u′u†nu+ ru†nuu†u′)

= 1

r
(r ′x̂ − ru†u′x̂ + rx̂u†u′)

= r ′

r
x̂ + [x̂, u†u′].

(19)

Now, u†u′ is such that(u†u′)† = u†′u = −(u†u′), and(u†u′)∗ = (u†u′), which means that
(u†u′) is a pure bivector which enables us to define:

(u†u′)def= 1
2ηω (20)

such that equation (19) reads:

d

dt
x = r ′

r
x̂ + 1

2
η[x̂,ω] (21)

which obviously infers that the velocity dx/dt is just a stretching and rotation aroundω,
but also that the KS transformation consists of rewritingω in terms of the ‘product’(u†u′).
The angular momentum (per mass) is:

ηL
def= 1

2

[
x,

d

dt
x

]
= η

4
r[x̂, [x̂,ω]] = η

4
r(4ω − 2{x̂,ω}x̂)

L = r(ω − 1
2{x̂,ω}x̂)

(22)

which is the orthogonal part ofω to x̂, L = rω⊥.
We can also see thatω rotates:

1
2ηω

def=(u†u′) = u†(u′u†)udef= 1
2ηu

†Ωu (23)

such that: 

d

dt
x = r ′

r
x̂ + 1

2
η[x̂, u†Ωu]

= r ′

r
x̂ + 1

2
ηu†[n,Ω]u

= u†
(
r ′

r
n+ 1

2
η[n,Ω]

)
u

(24)

which can be read as (equation (24-2)): the velocity is a composition of a stretchingλx̂

and a rotationθ aroundβ̂ of the vectorn×Ω, or (equation (24-3)) a global rotation of a
‘moving’ vectorλn+ n×Ω

Reviewing the velocity, in one dimension we have triviallyw2′ = 2ww′ which is needed
for the algebraical simplification. In three dimensions we have

x′ = w†′nw + w†nw′ = 2w†nw′ + C3 (25)

where

C3
def=w†′nw − w†nw′ ∈ V3. (26)
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This also means that

C3 = r(u†′nu− u†nu′)
= ru†(uu†′n− nu′u†)u
= ru†(−u′u†n− nu′u†)u
= 2ηru†{n,Ω}u. (27)

Given n andw we find onex, while givenx we have an infinite set of possibilities to
choosen andw. We will then impose onn its orthogonality withΩ such thatC3 = 0 and
x′ = 2w†nw′.

ChoosingC3 = 0 ∀s, i.e.{n,Ω} = 0 implies also that{x,ω} = 0 and (see equation (22))
L = rω, which obviously infers that the trajectory remains orthogonal toL and thatω is
chosen in the same direction asL.

5. Derivation

Let us introduce these changes of variables in the equation of motion, and in the energy
equation. This leads to:{

2rw†
′
nw′ + 2rw†nw′′ − 2r ′w†nw′ = −Kw†nw

2 w†nw′ w†nw′ −Kr = hr2.
(28)

By trivial manipulations equation (28-1) gives:

2w′w†w′ + 2rw′′ − 2r ′w′ = −Kw (29)

and equation (28-2)

2nw′ w†nw′ −Kw = hrw. (30)

Noting that (usingC3 = 0):

r ′ = w†′w + w†w′ = nw′w†n+ w′w† (31)

we have successively:
2w′w†w′ + 2rw′′ − 2r ′w′ = −Kw
2w′w†w′ + 2rw′′ − 2(nw′w†n+ w′w†)w′ = −Kw
2rw′′ − 2nw′w†nw′ = −Kw

(32)

using equation (30) this finally leads to the required equation:{
2rw′′ − 2nw′w†nw′ = −Kw
2rw′′ − hrw −Kw = −Kw (33)

w′′ − h
2
w = 0 (34)

which is the regularized equation of motion!
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6. Constants of motion

The linearity of the equation of motion (34) unables us to find ‘trivial’ conserved objects
such as the Wronskian:

C2 = w†w′ − w†′w
C̃2 = w′w† − ww†′

C3 = w†′nw − w†nw′
C̃3 = w′nw† − wnw†′

(35)

C2, C̃2 are pure bivectors andC3, C̃3 are pure trivectors, all of which are conserved by the
equation of motion (34). It is easy to show that:

C2 = ηrω = ηL and C̃2 = ηrΩ (36)

which enables us to find explicitlyu:
u†u′ = 1

2ηω

du

ds
= 1

2
ηuω

r
du

ds
= 1

2
ηuL

(37)

u(s) = u(0) exp

[
1

2
ηL

∫ s

0

ds

r(s)

]
. (38)

We can always chooseu(0) = 1 such thatx(0) = r(0)n, and this finally gives:ω = Ω,
and β̂ = ω̂ = �̂. C3 is chosen to be 0 and this value will remain constant. With these
choices, we also havẽC3 = 0

We can also build from the linear equation of motion quadratic conserved quantities.
Two of them are easily obtained, a pure scalarC0

C0
def=w†′w′ − h

2
w†w (39)

(C†0 = C0 andC∗0 = C0), and a pure vectorC1:

C1
def=w†′nw′ − h

2
w†nw (40)

(C†1 = C1 andC∗1 = −C1), both are conserved and are related to:

C0 = w†′w′ − h
2
w†w

= 1

r
w†nw′w†nw′ − h

2
w†w

= r

4
vv − h

2
r

= K

2
(41)

and:

C1 = w†′nw′ − h
2
w†nw
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= 1

2

(
1

4
[v, [x,v]] + K

r
x

)
= 1

4
vxv − h

2
x

= −1

2
x

(
h+ v

2

2

)
+ 1

4
v{x,v} (42)

which is the famous ‘Laplace–Lentz’ conserved vector for the 1/r potential! It is also easy
to see that:

C2
0 − C2

1 =
h

8
([x,v])2 = −1

2
hL2. (43)

7. Geometrical solution

Looking atC0 andC1, we can define a new vectory (for h 6= 0) such that:
h

2
y

def=w′†nw′ (44)

y is, like x, a solution of the equation of motion (34), andC0, C1 can be written as:
2

|h|C0 = |y| − h

|h| |x|
2

h
C1 = y − x

(45)

which can be reread as: the trajectory is on a curve such that the sum (h < 0) or the
difference (h > 0) of the distances from the two extremal points of the constant vector
2C1/h is a constant. These are the usual definitions of the ellipse and hyperbola respectively
with the foci located at the extremal point of 2C1/h. In classical geometry (see figure 1)
this means that:

2a = 2
C0

|h| and 2c =
∣∣∣∣2C1

h

∣∣∣∣→ e
def= c
a
= |C1|

C0
(46)

Figure 1.
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which are then related directly to physical quantities by (we choose as initial condition
{x0,v0} = 0):

a = K

2|h| c = r0
∣∣∣∣∣h+

v2
0

2

2h

∣∣∣∣∣ e =
∣∣∣∣∣
v2

0
2 + h
v2

0
2 − h

∣∣∣∣∣ (47)

and, from equation (43):

a2(1− e2) = −L
2

2h
→


h > 0 e2 > 1 hyperbola

h < 0 e2 < 1 ellipse

h = 0 e2 = 1 parabola.

(48)

Whenh = 0, we have (equation (43))|C1| = C0, thuse = 1, so only the direction ofC1

is a relevant quantity, we have (with{x0,v0} = 0):

Ĉ1 = v̂x̂v̂ = −x̂0 (49)

which means that the symmetric ofx̂ with respect tov̂ remains constant and equal to−x̂0.
This is the ‘focal’ property of the parabola which states that: each vector from the focus to
a point on the parabola is ‘reflected’ in a same direction, namely−x̂0, its axis.

8. Explicit solution

Let us now write the solution forw(s).

• h < 0, h
def= − 2γ 2

w(s) = w0 cos(γ s)+ w′0
sin(γ s)

γ

w′(s) = −γw0 sin(γ s)+ w′0 cos(γ s).
(50)

Let us take, as initial condition{x0,v0} = 0, such that the initial velocity is orthogonal to
the position, then:

C1 = γ 2x0

(
1− v2

0

4γ 2

)
(51)

r(s) = w†(s)w(s)

= cos2(γ s)w†0w0+ cos(γ s) sin(γ s)

γ
(w
†
0w
′
0+ w′†0w0)+ sin2(γ s)

γ 2
w′†0w

′
0

= cos2(γ s)r0+ sin(2γ s)

4γ
{x0,v0} + sin2(γ s)

4γ 2
r0v

2
0

= r0

2

(
1+ v2

0

4γ 2

)
+ cos(2γ s)

r0

2

(
1− v2

0

4γ 2

)
(52)

r(s)′ = 1

2
{x(s),v(s)} = −γ sin(2γ s)r0

(
1− v2

0

4γ 2

)
(53)

given then the timet versuss (taking t = 0 whens = 0):

t (s) = r0

2

(
1+ v2

0

4γ 2

)
s + sin(2γ s)

r0

4γ

(
1− v2

0

4γ 2

)
(54)
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finally:

x(s) = w†(s)nw(s) = 1

2
x0

((
1− v2

0

4γ 2

)
+ cos(2γ s)

(
1+ v2

0

4γ 2

))
+ 1

2γ
r0 sin(2γ s)v0 (55)

v = 1

r(s)

(
−γx0 sin(2γ s)

(
1+ v2

0

4γ 2

)
+ r0 cos(2γ s)v0

)
. (56)

This shows an elliptic motion with principal axis length 2a and excentricitye given by:

2a = r0
(

1+ v2
0

4γ 2

)
= K

2γ 2
e = 1− 4γ 2r0

K
. (57)

A periodic motion ins and t with periodicity1s, 1t :

1s = π

γ
→ 1t = r0

2

(
1+ v2

0

4γ 2

)
π

γ
= Kπ

4γ 3
= Kπ√

2|h|3
= 2πa

3
2√

K
(58)

showing the Kepler proportionality between1t2 anda3

• h > 0, h
def=2γ 2

C1 = −γ 2x0

(
1+ v2

0

4γ 2

)
(59)

w(s) = w0 cosh(γ s)+ w′0
sinh(γ s)

γ

w′(s) = γw0 sinh(γ s)+ w′0 cosh(γ s)
(60)

which gives the hyperbolic motion (with{x0,v0} = 0):

r(s) = r0

2

(
1− v2

0

4γ 2

)
+ r0

2
cosh(2γ s)

(
1+ v2

0

4γ 2

)
t (s) = r0

2

(
1− v2

0

4γ 2

)
s + r0

4γ
sinh(2γ s)

(
1+ v2

0

4γ 2

)
x(s) = 1

2
x0

((
1+ v2

0

4γ 2

)
+ cosh(2γ s)

(
1− v2

0

4γ 2

))
+ 1

2γ
r0 sinh(2γ s)v0

v = 1

r(s)

(
γx0 sinh(2γ s)

(
1− v2

0

4γ 2

)
+ r0 cosh(2γ s)v0

)
.

(61)

• h = 0.
Finally, the parabolic cases give respectively (again with the initial orthogonality

{x0,v0} = 0):

w(s) = w0+ w′0s C1 = − 1
4x0v

2
0 (62)
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so:

r(s) = r0+ r0v
2
0

4
s2

t (s) = r0s + r0v
2
0

12
s3

x(s) = x0

(
1− v

2
0

4
s2

)
+ r0v0s

v =
v0− x0

r0

v2
0

2 s

1+ v2
0

4 s
2
.

(63)

9. Conclusions

The geometrical algebra approach to the motion of a two-body system interacting through
a 1/r potential, gives rise to numerous and fruitful analyses and discussions. The
simplification induced by the ‘elementary’ algebra treatment of the problem enables us
to derive the geometrical properties of the curves through physical parameters, and to
concentrate our attention on the physical meaning of ‘objects’ that we introduce. Analytical
solutions are then obtained using elementary analysis.
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